The heart of cardiac reprogramming: The cardiac fibroblasts
Journal of Molecular and Cellular Cardiology, ISSN: 0022-2828, Vol: 172, Page: 90-99
2022
- 12Citations
- 28Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations12
- Citation Indexes12
- 12
- CrossRef8
- Captures28
- Readers28
- 28
Review Description
Cardiovascular disease is the leading cause of death worldwide, outpacing pulmonary disease, infectious disease, and all forms of cancer. Myocardial infarction (MI) dominates cardiovascular disease, contributing to four out of five cardiovascular related deaths. Following MI, patients suffer adverse and irreversible myocardial remodeling associated with cardiomyocyte loss and infiltration of fibrotic scar tissue. Current therapies following MI only mitigate the cardiac physiological decline rather than restore damaged myocardium function. Direct cardiac reprogramming is one strategy that has promise in repairing injured cardiac tissue by generating new, functional cardiomyocytes from cardiac fibroblasts (CFs). With the ectopic expression of transcription factors, microRNAs, and small molecules, CFs can be reprogrammed into cardiomyocyte-like cells (iCMs) that display molecular signatures, structures, and contraction abilities similar to endogenous cardiomyocytes. The in vivo induction of iCMs following MI leads to significant reduction in fibrotic cardiac remodeling and improved heart function, indicating reprogramming is a viable option for repairing damaged heart tissue. Recent work has illustrated different methods to understand the mechanisms driving reprogramming, in an effort to improve the efficiency of iCM generation and create an approach translational into clinic. This review will provide an overview of CFs and describe different in vivo reprogramming methods.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0022282822001602; http://dx.doi.org/10.1016/j.yjmcc.2022.08.004; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85136258288&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/36007393; https://linkinghub.elsevier.com/retrieve/pii/S0022282822001602; https://dx.doi.org/10.1016/j.yjmcc.2022.08.004
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know