Biosensor-informed engineering of Cupriavidus necator H16 for autotrophic D-mannitol production
Metabolic Engineering, ISSN: 1096-7176, Vol: 72, Page: 24-34
2022
- 24Citations
- 52Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- 24
- Captures52
- Readers52
- 52
Article Description
Cupriavidus necator H16 is one of the most researched carbon dioxide (CO 2 )-fixing bacteria. It can store carbon in form of the polymer polyhydroxybutyrate and generate energy by aerobic hydrogen oxidation under lithoautotrophic conditions, making C. necator an ideal chassis for the biological production of value-added compounds from waste gases. Despite its immense potential, however, the experimental evidence of C. necator utilisation for autotrophic biosynthesis of chemicals is limited. Here, we genetically engineered C. necator for the high-level de novo biosynthesis of the industrially relevant sugar alcohol mannitol directly from Calvin-Benson-Bassham (CBB) cycle intermediates. To identify optimal mannitol production conditions in C. necator, a mannitol-responsive biosensor was applied for screening of mono- and bifunctional mannitol 1-phosphate dehydrogenases (MtlDs) and mannitol 1-phosphate phosphatases (M1Ps). We found that MtlD/M1P from brown alga Ectocarpus siliculosus performed overall the best under heterotrophic growth conditions and was selected to be chromosomally integrated. Consequently, autotrophic fermentation of recombinant C. necator yielded up to 3.9 g/L mannitol, representing a substantial improvement over mannitol biosynthesis using recombinant cyanobacteria. Importantly, we demonstrate that at the onset of stationary growth phase nearly 100% of carbon can be directed from the CBB cycle into mannitol through the glyceraldehyde 3-phosphate and fructose 6-phosphate intermediates. This study highlights for the first time the potential of C. necator to generate sugar alcohols from CO 2 utilising precursors derived from the CBB cycle.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1096717622000271; http://dx.doi.org/10.1016/j.ymben.2022.02.003; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85124706656&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/35149227; https://linkinghub.elsevier.com/retrieve/pii/S1096717622000271; https://dx.doi.org/10.1016/j.ymben.2022.02.003
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know