Advanced glycation end products in musculoskeletal system and disorders
Methods, ISSN: 1046-2023, Vol: 203, Page: 179-186
2022
- 54Citations
- 88Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Ferroptosis in Osteoarthritis: Current Understanding
Introduction Osteoarthritis (OA) is a prevalent joint degenerative disease in elderly individuals and is characterized by chronic joint pain and joint dysfunction, imposing a huge
Review Description
The human population is ageing globally, and the number of old people is increasing yearly. Diabetes is common in the elderly, and the number of diabetic patients is also increasing. Elderly and diabetic patients often have musculoskeletal disorder, which are associated with advanced glycation end products (AGEs). AGEs are heterogeneous molecules derived from non-enzymatic products of the reaction of glucose or other sugar derivatives with proteins or lipids, and many different types of AGEs have been identified. AGEs are a biomarker for ageing and for evaluating disease conditions. Fluorescence, spectroscopy, mass spectrometry, chromatography, and immunological methods are commonly used to measure AGEs, but there is no standardized evaluation method because of the heterogeneity of AGEs. The formation of AGEs is irreversible, and they accumulate in tissue, eventually causing damage. AGE accumulation has been confirmed in neuromusculoskeletal tissues, including bones, cartilage, muscles, tendons, ligaments, and nerves, where they adversely affect biomechanical properties by causing charge changes and forming cross-linkages. AGEs also bind to receptors, such as the receptor for AGEs (RAGE), and induce inflammation by intracellular signal transduction. These mechanisms cause many varied aging and diabetes-related pathological conditions, such as osteoporosis, osteoarthritis, sarcopenia, tendinopathy, and neuropathy. Understanding of AGEs related pathomechanism may lead to develop novel methods for the prevention and therapy of such disorders which affect patients’ quality of life. Herein, we critically review the current methodology used for detecting AGEs, and present potential mechanisms by which AGEs cause or exacerbate musculoskeletal disorders.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1046202320302073; http://dx.doi.org/10.1016/j.ymeth.2020.09.012; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85092643276&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/32987130; https://linkinghub.elsevier.com/retrieve/pii/S1046202320302073; https://dx.doi.org/10.1016/j.ymeth.2020.09.012
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know