Phylo-comparative analyses reveal the dual role of drift and selection in reproductive character displacement
Molecular Phylogenetics and Evolution, ISSN: 1055-7903, Vol: 140, Page: 106597
2019
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures21
- Readers21
- 21
Article Description
When incipient species meet in secondary contact, natural selection can rapidly reduce costly reproductive interactions by directly targeting reproductive traits. This process, called reproductive character displacement (RCD), leaves a characteristic pattern of geographic variation where divergence of traits between species is greater in sympatry than allopatry. However, because other forces can also cause similar patterns, care must be given in separating pattern from process. Here we show how the phylo-comparative method together with genomic data can be used to evaluate evolutionary processes at the population level in closely related species. Using this framework, we test the role of RCD in speciation of two cricket species endemic to Anatolian mountains by quantifying patterns of character displacement, rates of evolution and adaptive divergence. Our results show differing patterns of character displacement between species for reproductive vs. non-reproductive characters and strong patterns of asymmetric divergence. We demonstrate diversification results from rapid divergence of reproductive traits towards multiple optima under the dual influence of strong drift and selection. These results present the first solid evidence for RCD in Anatolian mountains, quantify the amount of drift and selection necessary for RCD to lead to speciation, and demonstrate the utility of phylo-comparative methods for quantifying evolutionary parameters at the population level.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1055790319302428; http://dx.doi.org/10.1016/j.ympev.2019.106597; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85071271859&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/31445201; https://linkinghub.elsevier.com/retrieve/pii/S1055790319302428; https://dx.doi.org/10.1016/j.ympev.2019.106597
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know