Role of the proximal ligand in peroxidase catalysis. Crystallographic, kinetic, and spectral studies of cytochrome c peroxidase proximal ligand mutants.
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 269, Issue: 32, Page: 20239-20249
1994
- 95Citations
- 27Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations95
- Citation Indexes95
- CrossRef95
- Captures27
- Readers27
- 27
Abstract Description
The role of the proximal histidine ligand in peroxidase function was studied by replacing the His side chain in cytochrome c peroxidase with Gln, Glu, or Cys. In addition, a double mutant was prepared where His-175 is converted to Gln and the site of free radical formation in Compound I, Trp-191 (Sivaraja, M., Goodin, D.B., Smith, M., and Hoffman, B. M. (1989) Science 245, 738-740), is converted to Phe. With the exception of the His-175–>Cys mutant, the proximal ligand mutants retain high levels of enzyme activity. Stopped flow studies show that replacing the His ligand with Gln has only a modest effect on the rate of Compound I formation demonstrating that the precise nature of the proximal ligand is not important in achieving a high rate of peroxide O-O bond cleavage. The double mutant, His-175–>Gln/Trp-191–>Phe, also forms Compound I rapidly but the initial product formed is very likely a long-lived porphyrin pi cation radical that slowly converts to a species more closely resembling the heme oxyferryl center of wild type Compound I. The relevance of these studies to the cytochrome c peroxidase-cytochrome c electron transfer system are discussed.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know