Respective roles of glucose, fructose, and insulin in the regulation of the liver-specific pyruvate kinase gene promoter.
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 269, Issue: 14, Page: 10213-10216
1994
- 62Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations62
- Citation Indexes61
- CrossRef61
- Policy Citations1
- Policy Citation1
- Captures17
- Readers17
- 17
Abstract Description
The L-type pyruvate kinase (L-PK) is a key enzyme of the glycolytic pathway mainly expressed in the liver. Rat liver contains a regulatory protein that inhibits glucokinase (GK) activity. The effect of this protein is greatly reinforced by the fructose 6-phosphate and antagonized by the fructose 1-phosphate (Van Schaftingen, E. (1989) Eur. J. Biochem. 179, 179-184). In hepatocytes, fructose in low concentrations is phosphorylated into fructose 1-phosphate, and therefore is able to active GK in the absence of insulin via the regulatory protein in the liver. In primary culture of rat hepatocytes, 0.2 mM fructose in the presence of 20 or 40 mM glucose stimulated the activity of the L-PK gene promoter fused with the chloramphenicol acetyltransferase reporter gene, regardless of the addition of insulin, through the glucose/insulin response element. A constitutive GK expression vector co-transfected with the L-PK/chloramphenicol acetyltransferase construct is also able to confer an insulin-independent glucose responsiveness in hepatocytes. Thus, the insulin effect on glucose-dependent activation of the L-PK promoter is, under these experimental conditions, to permit glucose phosphorylation through the stimulation of the GK synthesis. In the presence of glucose, the L-PK promoter can also be activated by a post-translational GK activation, mediated by a low concentration of fructose acting via the regulatory protein of glucokinase.
Bibliographic Details
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know