Hepatic lipase: site-directed mutagenesis of a serine residue important for catalytic activity.
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 265, Issue: 11, Page: 6291-6295
1990
- 48Citations
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations48
- Citation Indexes48
- CrossRef48
- Captures13
- Readers13
- 13
Abstract Description
Hepatic lipase (HL) is a member of the lipoprotein lipase/pancreatic lipase gene family and is believed to function in processing of intermediate and high density lipoproteins. As a lipase, HL is presumed to have a lipid interfacial binding domain, distinct from the esterase catalytic site, orienting the enzyme at aqueous-lipid interfaces and resulting in activation of esterase activity. However, the structural domains responsible for these separate functions have not been identified. Amino acid sequence homology to serine proteases, thioesterases and other lipases, identified Ser147 of rat HL as part of a highly conserved element in an esterase gene family. In order to better define the function of this domain in HL, site-directed mutagenesis was utilized to produce mutant cDNAs with amino acid substitutions for Ser147, Ser133, or Ser228. Following injection of Xenopus oocytes with SP6 transcripts for normal or mutant HL, media from the oocytes were assayed for lipolytic activity and immunoprecipitable HL protein. Mutations of Ser133 and Ser228 produced no decrease in activity whereas the mutant protein in which Ser147 was replaced with glycine had little, if any activity against emulsified triolein substrates. Replacing HL Ser147 with glycine also resulted in a protein with little or no measurable activity for tributyrin, a substrate which does not provide a lipid interface. These results suggest that Ser147 in rat HL is either located at the catalytic site or is required for maintaining the structural integrity of the catalytic site.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S002192581939324X; http://dx.doi.org/10.1016/s0021-9258(19)39324-x; https://linkinghub.elsevier.com/retrieve/pii/S002192581939324X; https://api.elsevier.com/content/article/PII:S002192581939324X?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S002192581939324X?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; http://dx.doi.org/10.1016/s0021-9258%2819%2939324-x; https://dx.doi.org/10.1016/s0021-9258%2819%2939324-x
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know