Early processing of prothrombin and factor X by the vitamin K-dependent carboxylase.
Journal of Biological Chemistry, ISSN: 0021-9258, Vol: 263, Issue: 20, Page: 9994-10001
1988
- 1Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
- Captures8
- Readers8
Article Description
Binding interactions between the membrane-associated vitamin K-dependent carboxylase and its prothrombin and factor X substrates have been investigated in liver microsomes. Both substrates are firmly attached to microsomal membrane fragments which also harbor the carboxylase. In vitro 14CO2 gamma-carboxylation of these substrates, triggered by reduced vitamin K1H2, resulted in release of 14C-labeled prothrombin precursors from the membrane fragments, but no release of 14C-labeled factor X precursors could be demonstrated, which suggested a difference in early processing of these substrates by the carboxylase. Warfarin treatment of rats resulted in a 3-fold increase in the membrane concentration of factor X antigens and a 20-fold increase in 14C gamma-carboxylation of the membrane pool of factor X carboxylase substrates. There was a dose-response relationship between the amount of drug administered to the rats and 14C labeling of the membrane pool of factor X carboxylase substrates. On the other hand, the membrane concentration of prothrombin antigens did not increase in response to the drug, and 14CO2 gamma-carboxylation of the membrane pool of prothrombin carboxylase substrates was the same in warfarin and saline-treated rats. The results demonstrate significant differences in the interaction between the carboxylase and its prothrombin and factor X substrates. It appears that the different interactions result from binding of the prothrombin and the factor X precursors to separate microsomal membrane proteins that are involved in the gamma-carboxylation reaction. Warfarin appears to induce the factor X precursor-specific but not the prothrombin precursor-specific binding proteins, which suggests a new mechanism for the action of warfarin. These binding proteins may be under different genetic control. Treatment of the prothrombin and the factor X carboxylase substrates with endonuclease H showed that the rat prothrombin and the human factor X carboxylase substrates are high mannose glycoproteins. The human prothrombin and the rat factor X carboxylase substrates did not, on the other hand, change their migration in sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels after endonuclease H treatment. The data demonstrate differences in the glycoprotein nature of the rat and the human carboxylase substrates.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021925819816150; http://dx.doi.org/10.1016/s0021-9258(19)81615-0; https://linkinghub.elsevier.com/retrieve/pii/S0021925819816150; https://api.elsevier.com/content/article/PII:S0021925819816150?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S0021925819816150?httpAccept=text/plain; https://dul.usage.elsevier.com/doi/; http://dx.doi.org/10.1016/s0021-9258%2819%2981615-0; https://dx.doi.org/10.1016/s0021-9258%2819%2981615-0
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know