Ras/Mitogen-Activated Protein Kinase Mediates Norepinephrine-Induced Phospholipase D Activation in Rabbit Aortic Smooth Muscle Cells by a Phosphorylation-Dependent Mechanism 1 1This work was supported by National Institutes of Health Grant 19134-25 from the National Heart, Lung and Blood Institute (to K.U.M.), an American Heart Association Beginners Grant in Aid (to M.M.M.), and an American Heart Association Tennessee Affiliate Independent Investigator Award (to I.F.B.).
The Journal of Pharmacology and Experimental Therapeutics, ISSN: 0022-3565, Vol: 293, Issue: 1, Page: 268-274
2000
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Phospholipase D (PLD) activity is regulated by phosphatidylinositol 4,5-biphosphate, protein kinase C (PKC), ADP-ribosylation factor, and Rho. The present study was designed to investigate the mechanism of norepinephrine (NE)-mediated PLD activation in rabbit aortic vascular smooth muscle cells (VSMC). NE (10 μM) caused activation of PLD, as measured by the production of phosphatidylethanol in [ 3 H]oleic acid-labeled cells. NE also increased PKC activity in VSMC. However, treatment of cells with bisindolylmaleimide, a PKC inhibitor, or long-term treatment with phorbol-12-myristate-13-acetate that depletes PKC did not decrease NE-induced activation of PLD. NE-stimulated PLD activity was attenuated by farnesyl transferase inhibitors (FPT III and SCH-56582), which reduce activation of both Ras and mitogen-activated protein (MAP) kinase. Moreover, transfection of VSMC with a dominant negative Ras resulted in inhibition of NE-stimulated MAP kinase and PLD activities. Treatment of cells with PD-98059, a MAP kinase kinase inhibitor, also reduced NE-stimulated PLD activity. These data suggest that NE-stimulated PLD activity is mediated via activation of Ras and MAP kinase in rabbit VSMC. To study the mechanism of activation of PLD by Ras/MAP kinase, NE-induced phosphorylation of PLD was examined. In VSMC, PLD of molecular mass 120 kDa was identified with polyclonal PLD antibody. Phosphorylation of PLD by NE, measured as 32 P incorporation into PLD, was inhibited by PD-98059. Moreover, PLD immunoprecipitated from VSMC lysates was phosphorylated in vitro by MAP kinase. Collectively, these results show a novel pathway for activation of PLD that appears to be mediated through Ras/MAP kinase pathway by a mechanism involving phosphorylation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know