Engineering of Fluorescent Reporters into Redox Domains to Monitor Electron Transfers
Methods in Enzymology, ISSN: 0076-6879, Vol: 474, Page: 1-21
2010
- 5Citations
- 17Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef5
- Captures17
- Readers17
- 17
Article Description
The rate of electron transfer through multicomponent redox systems is often monitored by following the absorbance change due to the oxidation of the upstream pyridine nucleotide electron donor (NADPH or NADH) that initiates the process. Such coupled assay systems are powerful, but because of problems regarding the rate-limiting step, they sometimes limit the kinetic information that can be obtained about individual components. For peroxiredoxins, such assays have led to widespread underestimates of their catalytic power. We show here how this problem can be addressed by a protein engineering strategy inspired by some bacterial and eukaryotic thioredoxins for which a significant fluorescence signal is generated during oxidation that provides a highly sensitive tool to directly measure electron transfers into and out of these domains. For the N-terminal domain of AhpF (a flavoprotein disulfide reductase) and Escherichia coli glutaredoxin 1, two cases not having such fluorescence signals, we have successfully added “sensor” tryptophan residues using the positions of tryptophan residues in thioredoxins as a guide. In another thioredoxin-fold redox protein, the bacterial peroxiredoxin AhpC, we used chemical modification to introduce a disulfide-bonded fluorophore. This modified AhpC still serves as an excellent substrate for the upstream AhpF electron donor but now generates a strong fluorescence signal during electron transfer. These tools have fundamentally changed our understanding of the catalytic power of peroxiredoxin systems and should also be widely applicable for improving quantitative assay capabilities in other electron transfer systems.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0076687910740015; http://dx.doi.org/10.1016/s0076-6879(10)74001-5; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=79958067312&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/20609901; http://linkinghub.elsevier.com/retrieve/pii/S0076687910740015; https://linkinghub.elsevier.com/retrieve/pii/S0076687910740015; http://dx.doi.org/10.1016/s0076-6879%2810%2974001-5; https://dx.doi.org/10.1016/s0076-6879%2810%2974001-5
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know