Preparation of porous materials by ultrasound-intensified acid leaching of high-carbon component in coal gasification fine slag
Journal of Fuel Chemistry and Technology, ISSN: 1872-5813, Vol: 52, Issue: 5, Page: 630-646
2024
- 2Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Coal gasification fine slag is one of the by-products from clean and efficient utilization of coal, and its resource utilization is extremely urgent. In this work, a high carbon fraction with a fixed carbon content higher than 60% was obtained by simple sieving of gasification fine slag, from which a porous material was prepared by ultrasonic acid leaching method. The adsorption performance of porous materials, being used as treatment of radioactive iodine in nuclear wastewater, is characterized by iodine adsorption value. The effects of ultrasound time, ultrasound power, acid concentration, and temperature on the iodine adsorption performance and compositional structure of the porous materials were systematically investigated by combining the results of SEM, BET, XRD, and FT-IR. The mechanisms of ultrasound-enhanced acid leaching on compositional structure of residual carbon and migration and transformation laws of the ash constituents were explored and summarized. The results show that the porous material prepared under conditions of acid concentration of 4 mol/L, acid immersion temperature of 50 °C, ultrasonic power of 210 W, and ultrasonic time of 1.5 h has the best iodine adsorption performance of 468.53 mg/g, with a specific surface area of 474.97 m 2 /g, and possesses a rich pore structure with predominant mesopores. The order of each factor on the iodine adsorption performance is: sonication time > acid concentration > sonication power > acid immersion temperature. The mechanism of ultrasonic enhanced acid leaching is that ultrasonic cavitation and mechanical wave action firstly enhance dissociation of carbon-ash adherent particles, thus making desorption of ash particles blocked in pore channels of the gasification slag to increase its connectivity; secondly, lead to generation of cracks on surface of the carbon and ash particles to enhance accessibility of inorganic components inside the carbon particles; and thirdly, enhance the acid leaching process by increasing mass transfer rate to strengthen leaching effect of inorganic components in the gasification slag.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S1872581323604025; http://dx.doi.org/10.1016/s1872-5813(23)60402-5; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85193477025&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S1872581323604025; http://dx.doi.org/10.1016/s1872-5813%2823%2960402-5; https://dx.doi.org/10.1016/s1872-5813%2823%2960402-5
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know