Nanoparticle Interactions and Molecular Relaxation in PLA/PBAT/Nanoclay Blends
Experimental Results, ISSN: 2516-712X, Vol: 1
2020
- 16Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Organo-modified clay nanoparticles were mixed at 1 and 5 wt% concentrations with a molten blend of 75 wt% of polylactide (PLA) and 25 wt% poly[(butylene adipate)-co-terephthalate] (PBAT). Three mixing strategies were used to control the localization of nanoclay. Small amplitude oscillatory shear (SAOS) and stress growth tests were conducted to clarify the nanoclay interactions with the blend components and its effect on the molecular relaxation behavior. SAOS and weighted relaxation spectra properties were determined before and after pre-shearing at a rate of 0.01 s-1. Molecular relaxation and its characteristics were influenced by PLA degradation, PBAT droplet coalescence, and nanoclay localization.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85117939766&origin=inward; http://dx.doi.org/10.1017/exp.2020.54; https://www.cambridge.org/core/product/identifier/S2516712X20000544/type/journal_article; https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S2516712X20000544
Cambridge University Press (CUP)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know