Simultaneous determination of mono-, di-, and triglycerides in multiphase systems by online fourier transform infrared spectroscopy
Analytical Chemistry, ISSN: 0003-2700, Vol: 83, Issue: 24, Page: 9321-9327
2011
- 30Citations
- 40Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations30
- Citation Indexes30
- CrossRef30
- 26
- Captures40
- Readers40
- 40
Article Description
Glycerides are of significant value for industry as ingredients with different purposes in food or cosmetics. The analysis of glycerides is mainly performed by gas chromatography (GC) or high-pressure liquid chromatography (HPLC), which demonstrate limitations in dealing with multiphase systems. In this article, an in situ differentiation between mono-, di-, and triglycerides in multiphase systems by Fourier transform infrared (FT-IR) spectroscopy is demonstrated. The enzymatic esterification of glycerol with lauric acid was analyzed as a model system. The reaction was carried out in a bubble column reactor containing four phases (two liquid phases of glycerol and lauric acid, air as gaseous phase, and a heterogeneous catalyst as solid phase). As a feasibility study, a chemometric model was generated for the pure components only. The quantities of lauric acid and the three products (mono-, di-, and trilaurin) were simultaneously determined over the course of the reaction with acceptable errors (1.8-12.5%) with regard to the calibration effort. This technology has the potential to give accurate results, particularly in unstable emulsion systems containing fats, oils, or emulsifiers, which are currently afflicted by analytical errors caused by the challenge of accurate sampling. © 2011 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know