Evaluation of intact mass spectrometry for the quantitative analysis of protein therapeutics
Analytical Chemistry, ISSN: 0003-2700, Vol: 84, Issue: 18, Page: 8045-8051
2012
- 39Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations39
- Citation Indexes39
- 39
- CrossRef33
- Captures50
- Readers50
- 48
Article Description
Implementation of modern analytical techniques, such as intact mass spectrometry, may allow for more detailed quality assessments of protein therapeutics. The complexity of the protein therapeutic manufacturing process as well as the sensitivity of these drugs to different storage conditions can lead to the presence of several undesired products, including truncations, degradation products, byproducts, and differentially modified protein variants that are difficult to detect by peptide mapping. Intact mass spectrometry can be used to identify the intact protein composition, inclusive of post-translational modifications (PTMs) but can also generate a chemical fingerprint of the different protein species present in a given sample. In this work, we systematically evaluated the influence of multiple charge states, multiple isotopes per charge state, and operating resolution on the suitability of intact mass spectrometry for quantitative analysis using insulin and somatotropin as model systems. Standard curves could be generated using absolute intensity data or using the relative ratio between the analyte and internal standard. These methods demonstrate the validity of quantitative intact mass spectrometry for the analysis of protein therapeutic drugs, thus providing a foundation for future comparative methods. © This article not subject to U.S. Copyright. Published 2012 by the American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know