Phosphorus Flow Patterns in the Chaohu Watershed from 1978 to 2012
Environmental Science and Technology, ISSN: 1520-5851, Vol: 49, Issue: 24, Page: 13973-13982
2015
- 64Citations
- 50Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations64
- Citation Indexes64
- 64
- CrossRef41
- Captures50
- Readers50
- 50
Review Description
Understanding historical patterns of phosphorus (P) cycling is critical for sustainable P management and eutrophication mitigation in watersheds. This study built a bottom-up model using the substance flow analysis approach to quantify P cycling in the Chaohu watershed during 1978-2012. We found that P flows have been intensified, with a 5-fold increase of annual P inputs to sustain the expanding intensive agriculture. Annually, most P inputs (75%) were stored within the watershed, which caused accelerating buildup of legacy P in cultivated land (from 4.9 Gg to 6.5 × 10 Gg), uncultivated land (from 2.1 Gg to 1.3 × 10 Gg) and surface water (from 3.7 Gg to 2.6 × 10 Gg) during 1978-2012. The main legacy P sources include fertilizer application for cultivated land, phosphogypsum abandonment for uncultivated land, respectively. The animal husbandry contributed about 63-66% of total P inputs to surface water. The contribution of animal food-P increased greatly during 1978-2012, from 7% to 24% and from 1% to 8% for urban and rural residents, respectively. This work demonstrates principle for the buildup of legacy P at the watershed-scale, and advances the knowledge of sustainable P management, such as improving agricultural technologies to reduce fertilizer application.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know