ZSM-5 Membranes Fabricated through Template-Free Gel for Energy Storage
Industrial and Engineering Chemistry Research, ISSN: 1520-5045, Vol: 63, Issue: 30, Page: 13282-13290
2024
- 2Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Vanadium flow battery (VFB) shows great potential in balancing the volatility of renewable energy. In this work, we investigated, for the first time, the various properties of crystalline ZSM-5 membranes prepared through the organic template-free gel strategy in VFB. The subnano windows (∼0.55 nm) of ZSM-5 zeolite provided selective transport paths for protons (∼0.27 nm) and blocked the vanadium (>0.6 nm) migration through pore repulsion effect. The zeolite membranes exhibited a very low vanadium penetration rate (0.05 mmol L h), achieving a Coulombic efficiency (CE) of 96.1%, a voltage efficiency of 78.3%, and an energy efficiency of 75.3% at the current density of 40 mA cm. Notably, ZSM-5 prepared using the template-free strategy eliminates the need for a high-temperature calcination step, and the membrane has a lower defect density and exhibits a higher CE. The self-discharge time of the ZSM-5 zeolite membrane increased up to 78 h. Furthermore, the charge-discharge performance kept stable more than 300 cycles at 60 mA cm
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know