Libraries of Extremely Localized Molecular Orbitals. 1. Model Molecules Approximation and Molecular Orbitals Transferability
Journal of Chemical Theory and Computation, ISSN: 1549-9626, Vol: 12, Issue: 3, Page: 1052-1067
2016
- 66Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations66
- Citation Indexes66
- 66
- CrossRef62
- Captures32
- Readers32
- 32
Article Description
Despite more and more remarkable computational ab initio results are nowadays continuously obtained for large macromolecular systems, the development of new linear-scaling techniques is still an open and stimulating field of research in theoretical chemistry. In this family of methods, an important role is occupied by those strategies based on the observation that molecules are generally constituted by recurrent functional units with well-defined intrinsic features. In this context, we propose to exploit the notion of extremely localized molecular orbitals (ELMOs) that, due to their strict localization on small molecular fragments (e.g., atoms, bonds, or functional groups), are in principle transferable from one molecule to another. Accordingly, the construction of orbital libraries to almost instantaneously build up approximate wave functions and electron densities of very large systems becomes conceivable. In this work, the ELMOs transferability is further investigated in detail and, furthermore, suitable rules to construct model molecules for the computation of ELMOs to be stored in future databanks are also defined. The obtained results confirm the reliable transferability of the ELMOs and show that electron densities obtained from the transfer of extremely localized molecular orbitals are very close to the corresponding Hartree-Fock ones. These observations prompt us to construct new ELMOs databases that could represent an alternative/complement to the already popular pseudoatoms databanks both for determining electron densities and for refining crystallographic structures of very large molecules.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know