Identifying Differences between Semiclassical and Full-Quantum Descriptions of Plexcitons
Journal of Physical Chemistry Letters, ISSN: 1948-7185, Vol: 15, Issue: 37, Page: 9326-9334
2024
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
Strong light-matter coupling between molecules and plasmonic nanoparticles gives rise to new hybrid eigenstates of the coupled system, commonly referred to as polaritons or, more precisely, plexcitons. Over the past decade, it has been amply shown that molecular electron dynamics and photophysics can be drastically affected by such interactions, thus paving the way for light-induced control of molecular excited state properties and reactivity. Here, by combining the ab initio molecular description and classical or quantum modeling of arbitrarily shaped plasmonic nanostructures within the stochastic Schrödinger equation, we present two approaches, one semiclassical and one full-quantum, to follow in real time the electronic dynamics of plexcitons while realistically taking plasmonic dissipative losses into account. The full-quantum theory is compared with the semiclassical analogue under different interaction regimes, showing (numerically and theoretically) that even in the weak-field and weak-coupling limit a small-yet-observable difference arises.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know