The Role of pH and Ionic Strength in the Attraction-Repulsion Balance of Fibrinogen Interactions
Langmuir, ISSN: 1520-5827, Vol: 37, Issue: 34, Page: 10394-10401
2021
- 14Citations
- 19Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations14
- Citation Indexes14
- 14
- CrossRef9
- Captures19
- Readers19
- 19
Article Description
Fibrinogen (Fg) self-assembly is sensitive to the physicochemical properties of an environment like pH and ionic strength. These parameters tune the direction and strength of noncovalent physical driving forces determining protein intermolecular interactions. The attraction-repulsion balance in intermolecular interactions of the multidomain protein Fg at pH values 3.5, 7.4, and 9.5 and varying ionic strengths of the water medium has been analyzed by the complex diffusive approach, proposed by us previously. The concentration dependence of protein collective diffusion was analyzed within the phenomenological approach, based on the frictional formalism of nonequilibrium thermodynamics proposed by H. Vink. The analysis of protein diffusion data has shown the fundamental difference in the physical nature and direction of interaction forces between protein molecules at different conditions. The paired interaction potential of protein molecules was characterized in terms of second virial coefficients and Hamaker constants within the Deryaguin-Landau-Verwey-Overbeek theory and the "porous"colloid particle model. Our results indicated the maximum Hamaker constant and dominance of the van der Waals attraction between Fg molecules at pH 7.4. The increase in pH up to 9.5 results in the zero values of the second virial coefficient and Hamaker constant, corresponding to the full reciprocal compensation for electrostatic repulsion and van der Waals attraction. In the acidic medium (pH 3.5), the strong electrostatic repulsion substantially exceeds the van der Waals attraction. A high ionic strength is characterized by a significant decrease of all intermolecular interactions, which is expressed in almost zero values of virial coefficients and the Hamaker constant. Thus, it is experimentally shown that the physiological conditions of the Fg environment (pH 7.4 and slight ionic strength) provide a high probability for peak physical attraction between fibrinogen molecules, which is used in nature to facilitate blood clotting.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know