PlumX Metrics
Embed PlumX Metrics

Polymerization-Induced Phase Separation in Rubber-Toughened Amine-Cured Epoxy Resins: Tuning Morphology from the Nano- To Macro-scale

Macromolecules, ISSN: 1520-5835, Vol: 54, Issue: 17, Page: 7796-7807
2021
  • 35
    Citations
  • 0
    Usage
  • 58
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    35
    • Citation Indexes
      35
  • Captures
    58

Article Description

Polymerization-induced phase separation enables fine control over thermoset network morphologies, yielding heterogeneous structures with domain sizes tunable over 1-100 nm. However, the controlled chain-growth polymerization techniques exclusively employed to regulate the morphology at these length scales are unsuitable for a majority of thermoset materials typically formed through step-growth mechanisms. By varying the composition of a binary curing agent mixture in a classic rubber-toughened epoxy thermoset, where the two curing agents are selected based on disparate compatibility with the rubber, we demonstrate facile tunability over morphology through a single compositional parameter. Indeed, this method yields morphologies spanning the nano-scale to the macro-scale, controlled by the relative reactivities and thermodynamic compatibility of the network components. We further demonstrate a profound connection between chain dynamics and microstructure in these materials, with the tunable morphology enabling exquisite variations in glass transition. In addition, previously unattainable control over tensile mechanical properties is realized, including atypical increase of elongation at failure while maintaining the modulus and ultimate strength.

Bibliographic Details

Samuel C. Leguizamon; Jackson Powers; Sara Dickens; Brad H. Jones; Juhong Ahn; Sangwoo Lee

American Chemical Society (ACS)

Chemistry; Materials Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know