Potassium fluoride and carbonate lead to cell failure in potassium-ion batteries
ACS Applied Materials and Interfaces, ISSN: 1944-8252, Vol: 13, Issue: 45, Page: 53841-53849
2021
- 31Citations
- 39Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- 31
- CrossRef13
- Captures39
- Readers39
- 39
Article Description
While Li-ion is the prevailing commercial battery chemistry, the development of batteries that use earth-abundant alkali metals (e.g., Na and K) alleviates reliance on Li with potentially cheaper technologies. Electrolyte engineering has been a major thrust of Li-ion battery (LIB) research, and it is unclear if the same electrolyte design principles apply to K-ion batteries (KIBs). Fluoroethylene carbonate (FEC) is a well-known additive used in Li-ion electrolytes because the products of its sacrificial decomposition aid in forming a stable solid electrolyte interphase (SEI) on the anode surface. Here, we show that FEC addition to KIBs containing hard carbon anodes results in a dramatic decrease in capacity and cell failure in only two cycles, whereas capacity retention remains high (> 90% over 100 cycles at C/10 for both KPF6 and KFSI) for electrolytes that do not contain FEC. Using a combination of 19F solid-state nuclear magnetic resonance (SSNMR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS), we show that FEC decomposes during galvanostatic cycling to form insoluble KF and K2CO3 on the anode surface, which correlates with increased interfacial resistance in the cell. Our results strongly suggest that KIB performance is sensitive to the accumulation of an inorganic SEI, likely due to poor K transport in these compounds. This mechanism of FEC decomposition was confirmed in two separate electrolyte formulations using KPF6 or KFSI. Interestingly, the salt anions do not decompose themselves, unlike their Li analogues. Insight from these results indicates that electrolyte decomposition pathways and favorable SEI components are significantly different in KIBs and LIBs, suggesting that entirely new approaches to KIB electrolyte engineering are needed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know