Intratumoral Anti-PD-1 Nanoformulation Improves Its Biodistribution
ACS Applied Materials and Interfaces, ISSN: 1944-8252, Vol: 14, Issue: 14, Page: 15881-15893
2022
- 4Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations4
- Citation Indexes4
- Captures9
- Readers9
Article Description
Intratumoral administration of immune checkpoint inhibitors, such as programmed cell death-1 antibodies (aPD-1), is a promising approach toward addressing both the low patients' responses and high off-target toxicity, but good preclinical results have not translated in phase I clinical studies as significant off-target toxicities were observed. We hypothesized that the nanoformulation of aPD-1 could alter both their loco-regional and systemic distribution following intratumoral administration. To test this hypothesis, we developed an aPD-1 nanoformulation (aPD-1 NPs) and investigated its biodistribution following intratumoral injection in an orthotopic mice model of head and neck cancer. Biodistribution analysis demonstrated a significantly lower distribution in off-target organs of the nanoformulated aPD-1 compared to free antibodies. On the other hand, both aPD-1 NPs and free aPD-1 yielded a significantly higher tumor and tumor draining lymph node accumulation than the systemically administrated free aPD-1 used as the current clinical benchmark. In a set of comprehensive in vitro biological studies, aPD-1 NPs effectively inhibited PD-1 expression on T-cells to a similar extent to free aPD-1 and efficiently potentiated the cytotoxicity of T-cells against head and neck cancer cells in vitro. Further studies are warranted to assess the potential of this intratumoral administration of aPD-1 nanoformulation in alleviating the toxicity and enhancing the tumor efficacy of immune checkpoint inhibitors.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know