Facile Fabrication of Near-Infrared-Resonant and Magnetic Resonance Imaging-Capable Nanomediators for Photothermal Therapy
ACS Applied Materials and Interfaces, ISSN: 1944-8252, Vol: 7, Issue: 23, Page: 12814-12823
2015
- 16Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations16
- Citation Indexes16
- 16
- CrossRef9
- Captures17
- Readers17
- 17
Article Description
Although many techniques exist for fabricating near-infrared (NIR)-resonant and magnetic resonance imaging (MRI)-capable nanomediators for photothermal cancer therapy, preparing them in an efficient and scalable process remains a significant challenge. In this report, we exploit one-step siloxane chemistry to facilely conjugate NIR-absorbing satellites onto a well-developed polysiloxane-containing polymer-coated iron oxide nanoparticle (IONP) core to generate dual functional core-satellite nanomediators for photothermal therapy. An advantage of this nanocomposite design is the variety of potential satellites that can be simply attached to impart NIR resonance, which we demonstrate using NIR-resonant gold sulfide nanoparticles (Au2SNPs) and the NIR dye IR820 as two example satellites. The core-satellite nanomediators are fully characterized by using absorption spectra, dynamic light scattering, χ potential measurements, and transmission electron microscopy. The enhanced photothermal effect under the irradiation of NIR laser light is identified through in vitro solutions and in vivo mice studies. The MRI capabilities as contrast agents are demonstrated in mice. Our data suggest that polysiloxane-containing polymer-coated IONPs can be used as a versatile platform to build such dual functional nanomediators for translatable, MRI-guided photothermal cancer therapy.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know