Three-Dimensional conductive nanocomposites based on multiwalled carbon nanotube networks and PEDOT:PSS as a flexible transparent electrode for optoelectronics
ACS Applied Materials and Interfaces, ISSN: 1944-8252, Vol: 7, Issue: 21, Page: 11668-11676
2015
- 34Citations
- 51Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations34
- Citation Indexes34
- 34
- CrossRef31
- Captures51
- Readers51
- 51
Article Description
We have synthesized conductive nanocomposites composed of multiwalled carbon nanotubes (MWCNTs) and Au nanoparticles (NPs). The Au NPs with an average size of approximately 4.3 nm are uniformly anchored on the MWCNT. After being exposed to microwave (MW) plasma irradiation, the anchored Au NPs melt and fuse, leading to larger aggregates (34 nm) that can connect the MWCNT forming a three-dimensional conducting network. The formation of a continuous MWCNT network can produce more a conductive pathway, leading to lower sheet resistance. When the Au-MWCNT is dispersed in the highly conductive polymer, poly(ethylene dioxythiophene):polystyrenesulfonate (PEDOT:PSS), we can obtain solution-processable composite formulations for the preparation of a flexible transparent electrode. The resulting Au-MWCNT/PEDOT:PSS hybrid films possess a sheet resistance of 51 ω/sq with a transmittance of 86.2% at 550 nm. We also fabricate flexible organic solar cells and electrochromic devices to demonstrate the potential use of the as-prepared composite electrodes. Compared with the indium tin oxide-based devices, both the solar cells and electrochromic devices with the composites incorporated as a transparent electrode deliver comparable performance.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know