Site Activity and Population Engineering of NiRu-Layered Double Hydroxide Nanosheets Decorated with Silver Nanoparticles for Oxygen Evolution and Reduction Reactions
ACS Catalysis, ISSN: 2155-5435, Vol: 9, Issue: 1, Page: 117-129
2019
- 116Citations
- 52Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Developing efficient and durable bifunctional electrocatalysts for oxygen reduction and evolution reaction (ORR/OER) is highly desirable in energy conversion and storage systems. This study prepares nickel-ruthenium layered double hydroxide (NiRu-LDHs) nanosheets subjected to decoration with conductive silver nanoparticles (Ag NP/NiRu-LDHs), which interestingly induce their multivacancies associated with catalytic site activity and populations. The as-prepared Ag NP/NiRu-LDH shows excellent catalytic activity toward both OER and ORR features with low onset overpotentials of 0.21 V and -0.27 V, respectively, with a 0.76 V potential gap between OER potential at 10 mA cm and ORR potential at -3 mA cm , demonstrating that it is the preeminent bifunctional electrocatalyst reported to date. Compared with pristine NiRu-LDHs, the resulting Ag NP/NiRu-LDHs nanosheets require only an overpotential of 0.31 V to deliver 10 mA cm with excellent durability. The superb bifunctional performance of Ag NP/NiRu-LDH is ascribed to the formation of multivacancies, mutual benefits of synergistic effect between metal LDHs and silver nanoparticles, and increased accessible active sites together with site activity are the key to the perceived performance. This work provides a new strategy to decorate LDHs and to engineer multivacancies to enhance site activity and populations simultaneously as ORR/OER bifunctional electrocatalysts.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know