Performance of Conditional Random Forest and Regression Models at Predicting Human Fecal Contamination of Produce Irrigation Ponds in the Southeastern United States
ACS ES and T Water, ISSN: 2690-0637, Vol: 4, Issue: 12, Page: 5844-5855
2024
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
Irrigating fresh produce with contaminated water contributes to the burden of foodborne illness. Identifying fecal contamination of irrigation waters and characterizing fecal sources and associated environmental factors can help inform fresh produce safety and health hazard management. Using two previously collected data sets, we developed and evaluated the performance of logistic regression and conditional random forest models for predicting general and human-specific fecal contamination of ponds in southwest Georgia used for fresh produce irrigation. Generic Escherichia coli served as a general fecal indicator, and human-associated Bacteroides (HF183), crAssphage, and F+ coliphage genogroup II were used as indicators of human fecal contamination. Increased rainfall in the previous 7 days and the presence of a building within 152 m (a proxy for proximity to septic systems) were associated with increased odds of human fecal contamination in the training data set. However, the models did not accurately predict the presence of human-associated fecal indicators in a second data set collected from nearby irrigation ponds in different years. Predictive statistical models should be used with caution to assess produce irrigation water quality as models may not reliably predict fecal contamination at other locations and times, even within the same growing region.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know