Tandem Mass Tag Proteomic Analysis of in Vitro and in Vivo Models of Cutaneous Leishmaniasis Reveals Parasite-Specific and Nonspecific Modulation of Proteins in the Host
ACS Infectious Diseases, ISSN: 2373-8227, Vol: 5, Issue: 12, Page: 2136-2147
2019
- 8Citations
- 24Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations8
- Citation Indexes8
- CrossRef6
- Captures24
- Readers24
- 24
Article Description
Cutaneous leishmaniasis, the most common form of leishmaniasis, is endemic in several regions of the world, and if not treated properly, it can cause disfiguring scars on the skin. Leishmania spp. infection causes an inflammatory response in its host, and it modulates the host metabolism differently depending on the Leishmania species. Since Leishmania spp. has begun to develop resistance against current therapies, we believe efforts to identify new possibilities for treatment are critical for future control of the disease. Proteomics approaches such as isobaric labeling yield accurate relative quantification of protein abundances and, when combined with chemometrics/statistical analysis, provide robust information about protein modulation across biological conditions. Using a mass spectrometry-based proteomics approach and tandem mass tag labeling, we have investigated protein modulation in murine macrophages (in vitro model) and skin biopsies after exposure to Leishmania spp. (in vivo murine model). Infections induced by L. amazonensis (endemic in the New World) and L. major (endemic in the Old World) were compared to an inflammation model to search for Leishmania-specific and nonspecific protein modulation in the host. After protein extracts obtained from in vitro and in vivo experiments were digested, the resulting peptides were labeled with isobaric tags and analyzed by liquid chromatography-MS (LC-MS). Several proteins that were found to be changed upon infection with Leishmania spp. provide interesting candidates for further investigation into disease mechanism and development of possible immunotherapies.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know