PlumX Metrics
Embed PlumX Metrics

Gate-Switchable Molecular Diffusion on a Graphene Field-Effect Transistor

ACS Nano, ISSN: 1936-086X, Vol: 18, Issue: 35, Page: 24262-24268
2024
  • 0
    Citations
  • 0
    Usage
  • 3
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Controlling the surface diffusion of particles on 2D devices creates opportunities for advancing microscopic processes such as nanoassembly, thin-film growth, and catalysis. Here, we demonstrate the ability to control the diffusion of FTCNQ molecules at the surface of clean graphene field-effect transistors (FETs) via electrostatic gating. Tuning the back-gate voltage (V) of a graphene FET switches molecular adsorbates between negative and neutral charge states, leading to dramatic changes in their diffusion properties. Scanning tunneling microscopy measurements reveal that the diffusivity of neutral molecules decreases rapidly with a decreasing V and involves rotational diffusion processes. The molecular diffusivity of negatively charged molecules, on the other hand, remains nearly constant over a wide range of applied V values and is dominated by purely translational processes. First-principles density functional theory calculations confirm that the energy landscapes experienced by neutral vs charged molecules lead to diffusion behavior consistent with experiment. Gate-tunability of the diffusion barrier for FTCNQ molecules on graphene enables graphene FETs to act as diffusion switches.

Bibliographic Details

Liou, Franklin; Tsai, Hsin-Zon; Goodwin, Zachary A H; Yang, Yiming; Aikawa, Andrew S; Angeles, Brian R P; Pezzini, Sergio; Nguyen, Luc; Trishin, Sergey; Cheng, Zhichao; Zhou, Shizhe; Roberts, Paul W; Xu, Xiaomin; Watanabe, Kenji; Taniguchi, Takashi; Bellani, Vittorio; Wang, Feng; Lischner, Johannes; Crommie, Michael F

American Chemical Society (ACS)

Materials Science; Engineering; Physics and Astronomy

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know