Cleavage of Organosolv Lignin to Phenols Using Nitrogen Monoxide and Hydrazine
ACS Omega, ISSN: 2470-1343, Vol: 6, Issue: 30, Page: 19400-19408
2021
- 1Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
From the variety of methods known for the depolymerization of organosolv lignin, a broad range of diversely substituted aromatic compounds are available today. In the present work, a novel two-step reaction sequence is reported, which is focused on the formation of phenols. While the first step of the depolymerization strategy comprises the 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)-catalyzed oxidation of organosolv lignin with nitrogen monoxide so that two waste materials are combined, cleavage to the phenolic target compounds is achieved in the second step employing hydrazine and potassium hydroxide under Wolff-Kishner-type conditions. Besides the fact that the novel strategy proceeds via an untypical form of oxidized organosolv lignin, the two-step sequence is further able to provide phenols as cleavage products, which bear no substituent at the 4-position.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know