Asphaltene-Derived Graphene Quantum Dots for Controllable Coatings on Glass, Fabrics, and Aerogels
ACS Omega, ISSN: 2470-1343, Vol: 8, Issue: 46, Page: 43610-43616
2023
- 3Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Graphene quantum dots (GQDs) derived from natural asphaltene byproducts can produce controlled hydrophobic or hydrophilic interfaces on glass, fabrics, and aerogels. A set of facile solvent extraction methods were used to isolate and chemically prepare materials with different surface functionalities from a commercially derived asphaltene precursor. The organic-soluble fraction was used to create hydrophobic and water-repellent surfaces on glass and cotton fabrics. The GQD solutions could also penetrate the pores of a silica aerogel, rendering it hydrophobic. Alternatively, by extracting the more polar fraction of the GQDs and oxidizing their surfaces, we also demonstrate strongly hydrophilic coatings. This work shows that naturally abundant GQD-containing materials can produce interfaces with the desired wettability properties through a straightforward tuning of the solvent extraction procedure. Owing to their natural abundance, low toxicity, and strong fluorescence, asphaltene-derived GQDs could thus be applied, in bulk, toward a wide range of tunable surface coatings. This approach, moreover, uses an important large-scale hydrocarbon waste material, thereby offering a sustainable alternative to the disposal of asphaltene wastes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know