Flexible Sensor for Real-Time Monitoring of Motion Artifacts in Magnetic Resonance Imaging
ACS Sensors, ISSN: 2379-3694, Vol: 9, Issue: 5, Page: 2614-2621
2024
- 2Citations
- 4Captures
- 12Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
This self-powered sensor could make MRIs more efficient
MRI scans are commonly used to diagnose a variety of conditions, anything from liver disease to brain tumors. But, as anyone who has been through
Article Description
In recent years, magnetic resonance imaging has been widely used in the medical field. During the scan, if the human body moves, then there will be motion artifacts on the scan image, which will interfere with the diagnosis and only be found after the end of the scan sequence, resulting in a waste of manpower and resources. However, there is a lack of technology that halts scanning once motion artifacts arise. Here, we designed a real-time monitoring sensor (RMS) to dynamically perceive the movement of the human body and to pause in time when the movement exceeds a certain amplitude. The sensor has an array structure that can accurately sense the position of the human body in real time. The selection of the RMS ensures that there is no additional interference with the scanning results. Based on this design, the RMS can achieve the monitoring function of motion artifact generation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know