One-Pot Biosynthesis of Acetone from Waste Poly(hydroxybutyrate)
ACS Sustainable Chemistry and Engineering, ISSN: 2168-0485, Vol: 12, Issue: 20, Page: 7748-7756
2024
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures10
- Readers10
- 10
Article Description
The plastic waste crisis is catalyzing change across the plastics life cycle. Central to this is increased production and application of bioplastics and biodegradable plastics. In particular, poly(hydroxybutyrate) (PHB) is a biodegradable bioplastic that can be produced from various renewable and waste feedstocks and is a promising alternative to some petrochemical-derived and non-biodegradable plastics. Despite its advantages, PHB biodegradation depends on environmental conditions, and the effects of degradation into microplastics, oligomers, and the 3-hydroxybutyrate (3-HB) monomer on soil microbiomes are unknown. We hypothesized that the ease of PHB biodegradation renders this next-generation plastic an ideal feedstock for microbial recycling into platform chemicals currently produced from fossil fuels. To demonstrate this, we report the one-pot degradation and recycling of PHB into acetone using a single strain of engineered Escherichia coli. Following strain development and initial bioprocess optimization, we report maximum titers of 123 mM acetone (7 g/L) from commercial PHB granules after 24 h fermentation at 30 °C. We further report biorecycling of an authentic sample of post-consumer PHB waste at a preparative scale. This is the first demonstration of biological recycling of PHB into a second-generation chemical, and it demonstrates next-generation plastic waste as a novel feedstock for the circular bioeconomy.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know