Efficient CRISPR/Cas12a-Based Genome-Editing Toolbox for Metabolic Engineering in Methanococcus maripaludis
ACS Synthetic Biology, ISSN: 2161-5063, Vol: 11, Issue: 7, Page: 2496-2503
2022
- 15Citations
- 46Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef6
- Captures46
- Readers46
- 46
Article Description
The rapid-growing and genetically tractable methanogen Methanococcus maripaludis is a promising host organism for the biotechnological conversion of carbon dioxide and renewable hydrogen to fuels and value-Added products. Expansion of its product scope through metabolic engineering necessitates reliable and efficient genetic tools, particularly for genome edits that affect the primary metabolism and cell growth. Here, we have designed a genome-editing toolbox by utilizing Cas12a from Lachnospiraceae bacterium ND2006 (LbCas12a) in combination with the homology-directed repair machinery endogenously present in M. maripaludis. This toolbox can delete target genes with a success rate of up to 95%, despite the hyperpolyploidy of M. maripaludis. For the purpose of demonstrating a large deletion, the M. maripaludis flagellum operon (â 8.9 kbp) was replaced by the Escherichia coli β-glucuronidase gene. To facilitate metabolic engineering and flux balancing in M. maripaludis, the relative strength of 15 different promoters was quantified in the presence of two common growth substrates, either formate or carbon dioxide and hydrogen. This CRISPR/LbCas12a toolbox can be regarded as a reliable and quick method for genome editing in a methanogen.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know