An Implementation-Focused Bio/Algorithmic Workflow for Synthetic Biology
ACS Synthetic Biology, ISSN: 2161-5063, Vol: 5, Issue: 10, Page: 1127-1135
2016
- 26Citations
- 65Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations26
- Citation Indexes26
- CrossRef26
- 21
- Captures65
- Readers65
- 65
Article Description
As synthetic biology moves away from trial and error and embraces more formal processes, workflows have emerged that cover the roadmap from conceptualization of a genetic device to its construction and measurement. This latter aspect (i.e., characterization and measurement of synthetic genetic constructs) has received relatively little attention to date, but it is crucial for their outcome. An end-to-end use case for engineering a simple synthetic device is presented, which is supported by information standards and computational methods and focuses on such characterization/measurement. This workflow captures the main stages of genetic device design and description and offers standardized tools for both population-based measurement and single-cell analysis. To this end, three separate aspects are addressed. First, the specific vector features are discussed. Although device/circuit design has been successfully automated, important structural information is usually overlooked, as in the case of plasmid vectors. The use of the Standard European Vector Architecture (SEVA) is advocated for selecting the optimal carrier of a design and its thorough description in order to unequivocally correlate digital definitions and molecular devices. A digital version of this plasmid format was developed with the Synthetic Biology Open Language (SBOL) along with a software tool that allows users to embed genetic parts in vector cargoes. This enables annotation of a mathematical model of the device's kinetic reactions formatted with the Systems Biology Markup Language (SBML). From that point onward, the experimental results and their in silico counterparts proceed alongside, with constant feedback to preserve consistency between them. A second aspect involves a framework for the calibration of fluorescence-based measurements. One of the most challenging endeavors in standardization, metrology, is tackled by reinterpreting the experimental output in light of simulation results, allowing us to turn arbitrary fluorescence units into relative measurements. Finally, integration of single-cell methods into a framework for multicellular simulation and measurement is addressed, allowing standardized inspection of the interplay between the carrier chassis and the culture conditions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know