Ferritin-templated synthesis and self-assembly of Pt nanoparticles on a monolithic porous graphene network for electrocatalysis in fuel cells
ACS Applied Materials and Interfaces, ISSN: 1944-8244, Vol: 5, Issue: 3, Page: 782-787
2013
- 96Citations
- 87Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations96
- Citation Indexes96
- 96
- CrossRef91
- Captures87
- Readers87
- 87
Article Description
The monolithic three-dimensional (3D) graphene network is used as the support for Pt nanoparticles (NPs) to fabricate an advanced 3D graphene-based electrocatalyst. Distinct from previous strategies, the monodispersed Pt NPs with ultrafine particle size (∼3 nm) are synthesized using ferritin protein nanocages as the template and subsequently self-assembled on the 3D graphene by leveraging on the hydrophobic interaction between the ferritin and the graphene. Following the self-assembly, the ferritins are removed, resulting in a stable Pt NP/3D graphene composite. The composite exhibits much enhanced electrocatalytic activity for methanol oxidation as compared with both Pt NP/chemically reduced graphene oxide (Pt/r-GO) and state-of-the-art Pt/C catalyst. The observed electrocatalytic activity also shows marked improvement over Pt/3D graphene prepared by pulse electrodeposition of Pt. This study demonstrates that protein nanocage templating and assembly are promising strategies for the fabrication of functional composites in catalysis and fuel cell applications. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know