Improve the operational stability of the inverted organic solar cells using bilayer metal oxide structure
ACS Applied Materials and Interfaces, ISSN: 1944-8252, Vol: 6, Issue: 21, Page: 18861-18867
2014
- 21Citations
- 27Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations21
- Citation Indexes21
- 21
- CrossRef17
- Captures27
- Readers27
- 27
Article Description
Operational stability is a big obstacle for the application of inverted organic solar cells (OSCs), however, less talked about in the research reports. Due to photoinduced degradation of the metal oxide interlayer, which can cause shunts generation and degeneration in ZnO interlayer, a significant degradation of open circuit voltage (V) and fill factor (FF) has been observed by in situ periodic measurements of the device current density-voltage (J-V) curves with light illumination. By combining TiO and ZnO to form bilayer structures on ITO, the photovoltaic performance is improved and the photoinduced degradation is reduced. It was found that the device based on ZnO/TiO bilayer structure achieved better operational stability as compared to that with ZnO or TiO interlayer.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know