Polyhomologation. A living C1 polymerization
Accounts of Chemical Research, ISSN: 0001-4842, Vol: 43, Issue: 11, Page: 1420-1433
2010
- 98Citations
- 56Captures
- 4Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations98
- Citation Indexes98
- 98
- CrossRef89
- Captures56
- Readers56
- 56
- Mentions4
- References4
- Wikipedia4
Article Description
The physical properties of synthetic macromolecules are strongly coupled to their molecular weight (MW), topology, and polydispersity index (PDI). Factors that contribute to their utility include the control of functionality at the macromolecule termini and copolymer composition. Conventional polymerization reactions that produce carbon backbone polymers (ionic, free radical, and coordination) provide little opportunity for controlling these variables. Living polymerizations, sometimes referred to as controlled polymerizations, have provided the means for achieving these goals. Not surprisingly, these reactions have had a profound impact on polymer and materials science. Three basic reaction types are used for the synthesis of most carbon backbone polymers. The first examples of "living" polymerizations were developed for ionic polymerizations (cationic and anionic). These reactions, which can be technically challenging to perform, can yield excellent control of molecular weight with very low polydispersity. The second reaction type, free radical polymerization, is one of the most widely used polymerizations for the commercial production of high molecular weight carbon backbone polymers. Nitroxide mediated polymerization (NMP), reversible addition-fragmentation chain transfer polymerization (RAFT), and atom transfer radical polymerization (ATRP) have emerged as three of the more successful approaches for controlling these reactions. The third type, transition metal mediated coordination polymerization, is the most important method for large-scale commercial polyolefin production. Simple nonfunctional hydrocarbon polymers such as polyethylene (PE), polypropylene, poly-α-olefins, and their copolymers are synthesized by high pressure-high temperature free radical polymerization, Ziegler-Natta or metallocene catalysts. Although these catalysts of exceptional efficiency that produce polymers on a huge scale are in common use, control that approaches a "living polymerization" is rare. Although the controlled synthesis of linear "polyethylene" described in this Account is not competitive with existing commercial processes for bulk polymer production, they can provide quantities of specialized materials for the study of structure-property relationships. This information can guide the production of polymers for new commercial applications. We initiated a search for novel polymerization reactions that would produce simple hydrocarbon polymers with the potential for molecular weight and topological control. Our research focused on polymerization reactions that employ nonolefin monomers, more specifically the polymerization of ylides and diazoalkanes. In this reaction, the carbon backbone is built one carbon at a time (C1 polymerization). These studies draw upon earlier investigations of the Lewis acid catalyzed polymerization of diazoalkanes and build upon our discovery of the trialkylborane initiated living polymerization of dimethylsulfoxonium methylide 1. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know