Peroxidase activity in prostaglandin endoperoxide H synthase-1 occurs with a neutral histidine proximal heme ligand
Biochemistry, ISSN: 0006-2960, Vol: 39, Issue: 22, Page: 6616-6624
2000
- 31Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations31
- Citation Indexes31
- CrossRef31
- 30
- Captures12
- Readers12
- 12
Article Description
Prostaglandin endoperoxide H synthases-1 and -2 (PGHS-1 and -2) convert arachidonic acid to prostaglandin H (PGH), the committed step in prostaglandin and thromboxane formation. Interaction of peroxides with the heme sites in PGHSs generates a tyrosyl radical that catalyzes subsequent cyclooxygenase chemistry. To study the peroxidase reaction of ovine oPGHS-1, we combined spectroscopic and directed mutagenesis data with X-ray crystallographic refinement of the heme site. Optical and Raman spectroscopy of oxidized oPGHS-1 indicate that its heme iron (Fe) exists exclusively as a high-spin, six-coordinate species in the holoenzyme and in heme- reconstituted apoenzyme. The sixth ligand is most likely water. The cyanide complex of oxidized oPGHS-1 has a six-coordinate, low-spin ferric iron with a v[Fe-CN] frequency at 445 cm; a monotonic sensitivity to cyanide isotopomers that indicates the FeCN adduct has a linear geometry. The ferrous iron in reduced oPGHS-1 adopts a high, spin, five-coordinate state that is converted to a six-coordinate, low-spin geometry by CO. The low-frequency Raman spectrum of reduced oPGHS-1 reveals two v[Fe-His] frequencies at 206 and 222 cm. These vibrations, which disappear upon addition of CO, are consistent with a neutral histidine (His388) as the proximal heme ligand. The refined crystal structure shows that there is a water molecule located between His388 and Tyr504 that can hydrogen bond to both residues. However, substitution of Tyr504 with alanine yields a mutant having 46% of the peroxidase activity of native oPGHS-1, establishing that bonding of Tyr504 to this water is not critical for catalysis. Collectively, our results show that the proximal histidine ligand in oPGHS-1 is electrostatically neutral. Thus, in contrast to most other peroxidases, a strongly basic proximal ligand is not necessary for peroxidase catalysis by oPGHS-1.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know