Role of aspartate 94 in the decay of the peroxide intermediate in the multicopper oxidase Fet3p
Biochemistry, ISSN: 0006-2960, Vol: 44, Issue: 16, Page: 6081-6091
2005
- 64Citations
- 52Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations64
- Citation Indexes64
- 64
- CrossRef60
- Captures52
- Readers52
- 52
Article Description
Fet3p is a multicopper oxidase that contains four Cu ions: one type 1, one type 2, and a coupled binuclear type 3 site. The type 2 and type 3 centers form a trinuclear cluster that is the active site for O reduction to HO. When the type 1 Cu is depleted (C484S mutation), the reaction of the reduced trinuclear cluster with O generates a peroxide intermediate. Kinetic studies of the decay of the peroxide intermediate suggest that a carboxyl residue (D94 in Fet3p) assists the reductive cleavage of the O-O bond at low pH. Mutations at the D94 residue (D94A, D94N, and D94E) have been studied to evaluate its role in the decay of the peroxide intermediate. Spectroscopic studies show that the D94 mutations affect the geometric and electronic structure of the trinuclear cluster in a way that is consistent with the hydrogen bond connectivity of D94. While the D94E mutation does not affect the initial reaction of the cluster with O, the D94A mutation causes larger structural changes that render the trinuclear cluster unreactive toward O, demonstrating a structural role for the D94 residue. The decay of the peroxide intermediate is markedly affected by the D94E mutation, confirming the involvement of D94 in this reaction. The D94 residue appears to activate a proton of the type 2 Cu-bound water for participation in the transition state. These studies provide new insight into the role of D94 and proton involvement in the reductive cleavage of the O-O bond. © 2005 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know