Bioinspired Design and Engineering of Functional Nanostructured Materials for Biomedical Applications
ACS Symposium Series, ISSN: 1947-5918, Vol: 1253, Page: 123-152
2017
- 16Citations
- 12Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Book Chapter Description
Nature has provided many ways to derive various functional materials with highly-ordered hierarchical structures and superb attributes from the sophisticated biological processes. Inspired by natural biomineralisation process, it has led to the emergence of four "bioinspired" strategies, i.e., bio-structure mimicking, bio-function anchoring, bio-templating and bio-assembling, to construct nanostructured materials with remarkable biomimetic properties. In this chapter, we will highlight the development of bioinspired approaches involving biomolecules and elucidate their roles in directing the bottom-up synthesis and programmable assembly of functional nanostructured materials. Their recent applications in diagnostics and therapeutic delivery will also be discussed. Finally, we will conclude this chapter with the challenges and future outlook of these bioinspired nanomaterials for the advanced biomedical applications such as theranostics.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know