PlumX Metrics
Embed PlumX Metrics

Biodendrimer-based hydrogel scaffolds for cartilage tissue repair

Biomacromolecules, ISSN: 1525-7797, Vol: 7, Issue: 1, Page: 310-316
2006
  • 213
    Citations
  • 0
    Usage
  • 166
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Photo-crosslinkable dendritic macromolecules are attractive materials for the preparation of cartilage tissue engineering scaffolds that may be optimized for in situ formation of hydrated, mechanically stable, and well-integrated hydrogel scaffolds supporting chondrocytes and chondrogenesis. We designed and synthesized a novel hydrogel scaffold for cartilage repair, based on a multivalent and water-soluble tri-block copolymer consisting of a poly(ethylene glycol) core and methacrylated poly(glycerol succinic acid) dendrimer terminal blocks. The terminal methacrylates allow mild and biocompatible photo-crosslinking with a visible light, facilitating in vivo filling of irregularly shaped defects with the dendrimer-based scaffold. The multivalent dendrimer constituents allow high crosslink densities that inhibit swelling after crosslinking while simultaneously introducing biodegradation sites. The mechanical properties and water content of the hydrogel can easily be tuned by changing the biodendrimer concentration. In vitro chondrocyte encapsulation studies demonstrate significant synthesis of neocartilaginous material, containing proteoglycans and type II collagen. © 2006 American Chemical Society.

Bibliographic Details

Serge H. M. Söntjens; Dana L. Nettles; Michael A. Carnahan; Lori A. Setton; Mark W. Grinstaff

American Chemical Society (ACS)

Chemical Engineering; Materials Science

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know