Biocompatibility of plasma enhanced chemical vapor deposited poly(2-hydroxyethyl methacrylate) films for biomimetic replication of the intestinal basement membrane
Biomacromolecules, ISSN: 1526-4602, Vol: 11, Issue: 6, Page: 1579-1584
2010
- 15Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef13
- Captures30
- Readers30
- 30
Article Description
It is recognized that topographical features such as ridges and grooves can dramatically influence cell phenotype, motivating the development of substrates with precisely biomimetic topography for study of the influence on cultured cells. Intestinal basement membrane topography has been precisely replicated using plasma enhanced chemical vapor deposition (CVD) of poly(2-hydroxyethyl methacrylate) (pHEMA) on native tissue. The ability for CVD pHEMA to coat and retain the complex architecture of the intestinal basement membrane at the micrometer scale was demonstrated using electron microscopy and surface chemical analysis (XPS). The suitability of CVD pHEMA as a cell culture substrate was assessed. Caco-2 cells maintained a high (>85%) viability on CVD pHEMA. Cell attachment and proliferation on CVD pHEMA were similar to those observed on materials traditionally used for cell culture and microfabrication purposes. Results indicate that CVD pHEMA is useful for development of precise (micrometer-scale) topographically biomimetic substrates for cell culture. © 2010 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know