Humidity and multiscale structure govern mechanical properties and deformation modes in films of native cellulose nanofibrils
Biomacromolecules, ISSN: 1525-7797, Vol: 14, Issue: 12, Page: 4497-4506
2013
- 239Citations
- 200Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations239
- Citation Indexes239
- 239
- CrossRef196
- Captures200
- Readers200
- 200
Article Description
Nanopapers formed by stiff and strong native cellulose nanofibrils are emerging as mechanically robust and sustainable materials to replace high-performance plastics or as flexible, transparent and "green" substrates for organic electronics. The mechanical properties endowed by nanofibrils crucially depend on mastering structure formation processes and on understanding interfibrillar interactions as well as deformation mechanisms in bulk. Herein, we show how different dispersion states of cellulose nanofibrils, that is, unlike tendencies to interfibrillar aggregation, and different relative humidities influence the mechanical properties of nanopapers. The materials undergo a humidity-induced transition from a predominantly linear elastic behavior in dry state to films displaying plastic deformation due to disengagement of the hydrogen-bonded network and lower nanofibrillar friction at high humidity. A concurrent loss of stiffness and tensile strength of 1 order of magnitude is observed, while maximum elongation stays near constant. Scanning electron microscopy imaging in plastic failure demonstrates pull-out of individual nanofibrils and bundles of nanofibrils, as well as larger mesoscopic layers, stemming from structures organized on different length scales. Moreover, multiple yielding phenomena and substantially increased elongation in strongly disengaged networks, swollen in water, show that strain at break in such nanofibril-based materials is coupled to relaxation of structural entities, such as cooperative entanglements and aggregates, which depend on the pathway of material preparation. The results demonstrate the importance of controlling the state of dispersion and aggregation of nanofibrils by mediating their interactions, and highlight the complexity associated with understanding hierarchically structured nanofibrillar networks under deformation. © 2013 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know