Estimating protein-ligand binding affinity using high-throughput screening by NMR
Journal of Combinatorial Chemistry, ISSN: 1520-4766, Vol: 10, Issue: 6, Page: 948-958
2008
- 90Citations
- 156Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations90
- Citation Indexes90
- 90
- CrossRef63
- Captures156
- Readers156
- 156
Article Description
Many of today's drug discovery programs use high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or line width to detect a protein-ligand interaction. However, the relatively low throughput of current NMR screens and their high demand on sample requirements generally makes it impractical to collect complete binding curves to measure the affinity for each compound in a large and diverse chemical library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to a protein and do not give any estimate of the binding affinity. To address this issue, a methodology has been developed to rank binding affinities for ligands based on NMR screens that use ID H NMR line-broadening experiments. This method was demonstrated by using it to estimate the dissociation equilibrium constants for twelve ligands with the protein human serum albumin (HSA). The results were found to give good agreement with previous affinities that have been reported for these same ligands with HSA. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know