On the use of neural network ensembles in QSAR and QSPR
Journal of Chemical Information and Computer Sciences, ISSN: 0095-2338, Vol: 42, Issue: 4, Page: 903-911
2002
- 169Citations
- 84Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations169
- Citation Indexes169
- 169
- CrossRef122
- Captures84
- Readers84
- 84
Article Description
Despite their growing popularity among neural network practitioners, ensemble methods have not been widely adopted in structure-activity and structure-property correlation. Neural networks are inherently unstable, in that small changes in the training set and/or training parameters can lead to large changes in their generalization performance. Recent research has shown that by capitalizing on the diversity of the individual models, ensemble techniques can minimize uncertainty and produce more stable and accurate predictors. In this work, we present a critical assessment of the most common ensemble technique known as bootstrap aggregation, or bagging, as applied to QSAR and QSPR. Although aggregation does offer definitive advantages, we demonstrate that bagging may not be the best possible choice and that simpler techniques such as retraining with the full sample can often produce superior results. These findings are rationalized using Krogh and Vedelsby's decomposition of the generalization error into a term that measures the average generalization performance of the individual networks and a term that measures the diversity among them. For networks that are designed to resist over-fitting, the benefits of aggregation are clear but not overwhelming.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know