An automated method for exploring targeted substructural diversity within sets of chemical structures
Journal of Chemical Information and Modeling, ISSN: 1549-960X, Vol: 45, Issue: 5, Page: 1195-1204
2005
- 5Citations
- 26Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Practicing medicinal chemists tend to treat a lead compound as an assemblage of its substructural parts. By iteratively confining their synthetic efforts in a localized fashion, they are able to systematically investigate how minor changes in certain portions of the molecule effect the properties of interest in the logical expectation that the observed beneficial changes will be cumulative. One disadvantage to this approach arises when large amounts of structure data begin to accumulate which is often the case in recent times due to such developments as high-throughput screening, virtual screening, and combinatorial chemistry. How then does one interactively mine this diverse data consistent with the desired substructural template, so those desirable structural features can be discovered and interpreted, especially when they may not occur in the most active compounds due to structural deficiencies in other portions of the molecule? In this paper, we present an algorithm to automate this process that has historically been performed in an ad-hoc and manual fashion. Using the proposed method, significantly larger numbers of compounds can be analyzed in this fashion, potentially discovering useful structural feature combinations that would not have otherwise been detected due to the sheer scale of modern structural and biological data collections. © 2005 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know