Quantitative structure - Activity relationship studies on inhibition of HERG potassium channels
Journal of Chemical Information and Modeling, ISSN: 1549-960X, Vol: 46, Issue: 3, Page: 1371-1378
2006
- 64Citations
- 56Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations64
- Citation Indexes64
- 64
- CrossRef47
- Captures56
- Readers56
- 56
Review Description
The human ether-a-go-go-related gene (HERG) protein forms the ion channel responsible for the rapidly acting delayed rectifier potassium current, IKF, and its blockade is a significant contributor to prolongation of the QT interval. Using descriptors which have clear physicochemical meanings and are familiar to medicinal chemists, we have carried out 2D-quantitative structure - activity relationship (2D-QSAR) studies on 104 HERG channel blockers with diverse structures collected from the literature, and we have formulated interpretable models to guide chemical-modification studies and virtual screening. Statistically significant descriptors were selected by a genetic algorithm, and the final model included the octanol/water partition coefficient, topological polar surface area, diameter, summed surface area of atoms with partial charges from -0.25 to -0.20, and an indicator variable representing the experimental conditions. The statistics were r = 0.839, r = 0.704, q = 0.671, s = 0.763, and F = 46.6. The correspondence of the molecular determinants derived from the 2D-QSAR models with the 3D structural characteristics of the putative binding site in a homology-modeled HERG channel is also discussed. © 2006 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know