Ligand classifier of adaptively boosting ensemble decision stumps (LiCABEDS) and its application on modeling ligand functionality for 5HT-subtype GPCR families
Journal of Chemical Information and Modeling, ISSN: 1549-960X, Vol: 51, Issue: 3, Page: 521-531
2011
- 25Citations
- 28Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations25
- Citation Indexes25
- 25
- CrossRef21
- Captures28
- Readers28
- 28
Article Description
Advanced high-throughput screening (HTS) technologies generate great amounts of bioactivity data, and this data needs to be analyzed and interpreted with attention to understand how these small molecules affect biological systems. As such, there is an increasing demand to develop and adapt cheminformatics algorithms and tools in order to predict molecular and pharmacological properties on the basis of these large data sets. In this manuscript, we report a novel machine-learning-based ligand classification algorithm, named Ligand Classifier of Adaptively Boosting Ensemble Decision Stumps (LiCABEDS), for data-mining and modeling of large chemical data sets to predict pharmacological properties in an efficient and accurate manner. The performance of LiCABEDS was evaluated through predicting GPCR ligand functionality (agonist or antagonist) using four different molecular fingerprints, including Maccs, FP2, Unity, and Molprint 2D fingerprints. Our studies showed that LiCABEDS outperformed two other popular techniques, classification tree and Naive Bayes classifier, on all four types of molecular fingerprints. Parameters in LiCABEDS, including the number of boosting iterations, initialization condition, and a "reject option" boundary, were thoroughly explored and discussed to demonstrate the capability of handling imbalanced data sets, as well as its robustness and flexibility. In addition, the detailed mathematical concepts and theory are also given to address the principle behind statistical prediction models. The LiCABEDS algorithm has been implemented into a user-friendly software package that is accessible online at http://www.cbligand.org/LiCABEDS/. © 2011 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know