Comprehensive strategy for proton chemical shift prediction: Linear prediction with nonlinear corrections
Journal of Chemical Information and Modeling, ISSN: 1549-960X, Vol: 54, Issue: 2, Page: 419-430
2014
- 10Citations
- 30Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- CrossRef10
- 10
- Captures30
- Readers30
- 30
Article Description
A fast 3D/4D structure-sensitive procedure was developed and assessed for the chemical shift prediction of protons bonded to spcarbons, which poses the maybe greatest challenge in the NMR spectral parameter prediction. The LPNC (Linear Prediction with Nonlinear Corrections) approach combines three well-established multivariate methods viz. the principal component regression (PCR), the random forest (RF) algorithm, and the k nearest neighbors (kNN) method. The role of RF is to find nonlinear corrections for the PCR predicted shifts, while kNN is used to take full advantage of similar chemical environments. Two basic molecular models were also compared and discussed: in the MC model the descriptors are computed from an ensemble of the conformers found by conformational search based on Metropolis Monte Carlo (MMC) simulation; in the 4D model the conformational space was further expanded to the fourth dimension (time) by adding molecular dynamics to the MC conformers. An illustrative case study about the application and interpretation of the 4D prediction for a conformationally flexible structure, scopolamine, is described in detail. © 2014 American Chemical Society.
Bibliographic Details
American Chemical Society (ACS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know