Enhancement of ordinal CoMFA by ridge logistic partial least squares
Journal of Chemical Information and Modeling, ISSN: 1549-960X, Vol: 48, Issue: 4, Page: 910-917
2008
- 3Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Conventional comparative molecular field analysis (CoMFA) requires at least 3 orders of experimental data, such as IC and K, to obtain a good model, although practically there are many screening assays where biological activity is measured only by rating scale. To improve three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis, we developed in this study a modified ordinal classification-oriented CoMFA using partial-least-squares generalized linear regression and ridge estimation. The modified Logistic CoMFA was validated using a corticosteroid binding globulin receptor binding data set, a benchmark for 3D-QSAR, and an acetylcholine esterase inhibitor data set. Our results show that modification of Logistic CoMFA enhanced both prediction accuracy and 3D graphical analysis. In addition, the 3D graphical analysis of the modified Logistic CoMFA was much improved. This improvement resulted in more accurate information on the binding mode between proteins and ligands than in the case of conventional CoMFA. © 2008 American Chemical Society.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know